71 research outputs found

    Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications

    Get PDF
    Arterial spin labeling (ASL) is a magnetic resonance (MR) imaging technique used to assess cerebral blood flow noninvasively by magnetically labeling inflowing blood. In this article, the main labeling techniques, notably pulsed and pseudocontinuous ASL, as well as emerging clinical applications will be reviewed. In dementia, the pattern of hypoperfusion on ASL images closely matches the established patterns of hypometabolism on fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) images due to the close coupling of perfusion and metabolism in the brain. This suggests that ASL might be considered as an alternative for FDG, reserving PET to be used for the molecular disease-specific amyloid and tau tracers. In stroke, ASL can be used to assess perfusion alterations both in the acute and the chronic phase. In arteriovenous malformations and dural arteriovenous fistulas, ASL is very sensitive to detect even small degrees of shunting. In epilepsy, ASL can be used to assess the epileptogenic focus, both in peri- and interictal period. In neoplasms, ASL is of particular interest in cases in which gadolinium-based perfusion is contraindicated (eg, allergy, renal impairment) and holds promise in differentiating tumor progression from benign causes of enhancement. Finally, various neurologic and psychiatric diseases including mild traumatic brain injury or posttraumatic stress disorder display alterations on ASL images in the absence of visualized structural changes. In the final part, current limitations and future developments of ASL techniques to improve clinical applicability, such as multiple inversion time ASL sequences to assess alterations of transit time, reproducibility and quantification of cerebral blood flow, and to measure cerebrovascular reserve, will be reviewed

    Decompressive hemicraniectomy in severe cerebral venous thrombosis: a prospective case series

    Get PDF
    Small retrospective case series suggest that decompressive hemicraniectomy can be life saving in patients with cerebral venous thrombosis (CVT) and impending brain herniation. Prospective studies of consecutive cases are lacking. Thus, a single centre, prospective study was performed. In 2006 we adapted our protocol for CVT treatment to perform acute decompressive hemicraniectomy in patients with impending herniation, in whom the prognosis with conservative treatment was considered infaust. We included all consecutive patients with CVT between 2006 and 2010 who underwent hemicraniectomy. Outcome was assessed at 12 months with the modified Rankin Scale (mRS). Ten patients (8 women) with a median age of 41 years (range 26–52 years) were included. Before surgery 5 patients had GCS < 9, 9 patients had normal pupils, 1 patient had a unilaterally fixed and dilated pupil. All patients except one had space-occupying intracranial hemorrhagic infarcts. The median preoperative midline shift was 9 mm (range 3–14 mm). Unilateral hemicraniectomy was performed in 9 patients and bilateral hemicraniectomy in one. Two patients died from progressive cerebral edema and expansion of the hemorrhagic infarcts. Five patients recovered without disability at 12 months (mRS 0–1). Two patients had some residual handicap (one minor, mRS 2; one moderate, mRS 3). One patient was severely handicapped (mRS 5). Our prospective data show that decompressive hemicraniectomy in the most severe cases of cerebral venous thrombosis was probably life saving in 8/10 patients, with a good clinical outcome in six. In 2 patients death was caused by enlarging hemorrhagic infarcts

    An analysis of Methylenetetrahydrofolate reductase and Glutathione S-transferase omega-1 genes as modifiers of the cerebral response to ischemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral ischemia involves a series of reactions which ultimately influence the final volume of a brain infarction. We hypothesize that polymorphisms in genes encoding proteins involved in these reactions could act as modifiers of the cerebral response to ischemia and impact the resultant stroke volume. The final volume of a cerebral infarct is important as it correlates with the morbidity and mortality associated with non-lacunar ischemic strokes.</p> <p>Methods</p> <p>The proteins encoded by the methylenetetrahydrofolate reductase (<it>MTHFR</it>) and glutathione S-transferase omega-1 (<it>GSTO-1</it>) genes are, through oxidative mechanisms, key participants in the cerebral response to ischemia. On the basis of these biological activities, they were selected as candidate genes for further investigation. We analyzed the C677T polymorphism in the <it>MTHFR </it>gene and the C419A polymorphism in the <it>GSTO-1 </it>gene in 128 patients with non-lacunar ischemic strokes.</p> <p>Results</p> <p>We found no significant association of either the <it>MTHFR </it>(p = 0.72) or <it>GSTO-1 </it>(p = 0.58) polymorphisms with cerebral infarct volume.</p> <p>Conclusion</p> <p>Our study shows no major gene effect of either the <it>MTHFR </it>or <it>GSTO-1 </it>genes as a modifier of ischemic stroke volume. However, given the relatively small sample size, a minor gene effect is not excluded by this investigation.</p

    Circulating CD133+CD34+ progenitor cells inversely correlate with soluble ICAM-1 in early ischemic stroke patients

    Get PDF
    <p>Abstract</p> <p>Background and Purpose</p> <p>Both endothelial progenitor cells (EPC) and markers of neuroinflammation are candidate biomarkers for stroke severity and outcome prediction. A relationship between EPC and neuroinflammatory markers in early stroke is not fully elucidated. The objectives were to investigate correlations between EPC and neuroinflammation markers (adhesion molecules ICAM-1, VCAM-1, E-selectin, tumor necrosis factor (TNF)-α, interleukin (IL)-6, endothelin (ET)-1, markers of tissue injury (matrix metalloproteinases (MMP)-9 and tissue inhibitor of matrix metalloproteinases (TIMP)-1) in early stroke patients.</p> <p>Methods</p> <p>We prospectively recruited symptomatic patients with ischemic cerebrovascular disease. We assessed stroke severity by using of acute (diffusion-weighted imaging (DWI) and final lesion volumes (fluid attenuated inversion recovery (FLAIR). We measured serum soluble ICAM-1, VCAM-1, E-selectin, MMP-9, TIMP-1 and plasma TNF-α, IL-6, ET-1 by ELISA, and quantified EPC in mononuclear fraction of peripheral blood on days 1 and 3 in 17 patients (mean(SD) age 62(14), with admission National Institutes of Health Stroke Scale (NIHSS) 10(8)) selected from 175 patients with imaging confirmed ischemic stroke. Non-parametric statistics, univariate and multivariate analysis were used.</p> <p>Results</p> <p>Only ICAM-1 inversely correlated with EPC subset CD133+CD34+ on day 1 (Spearman r = -0.6, p < 0.01) and on day 3 (r = -0.967, p < 0.001). This correlation remained significant after adjustment for age and NIHSS (beta -0.992, p < 0.004), for glucose and systolic blood pressure (beta -0.86, p < 0.005), and for white blood cells and hematocrit (beta -1.057, p < 0.0001) on day 3. MMP-9 (r = 0.509, p < 0.04) and MMP-9/TIMP-1 (r = 0.59, p < 0.013) on day 1 correlated with acute lesion volume. Both IL-6 (r = 0.624, p < 0.01) and MMP-9/TIMP-1 (r = 0.56, p < 0.02) correlated with admission NIHSS.</p> <p>Conclusion</p> <p>Our study showed that high ICAM-1 is associated with low CD133+CD34+subset of EPC. Biomarkers of neuroinflammation may predict tissue injury and stroke severity in early ischemia.</p

    Neuropsychological Sequelae of Carotid Angioplasty with Stent Placement: Correlation with Ischemic Lesions in Diffusion Weighted Imaging

    Get PDF
    BACKGROUND AND PURPOSE: Few studies investigated the neuropsychological outcome after carotid angioplasty with stent placement (CAS), yielding partially inconsistent results. The present investigation evaluated the effect of CAS in patients with high-grade stenosis and assessed the predictive value of ischemic lesion number for postinterventional cognitive deterioration. METHODS: 22 patients were tested neuropsychologically before and six weeks after CAS. Cerebral ischemic changes were assessed with diffusion weighted imaging (DWI) prior to and after angioplasty. RESULTS: Pre- to postinterventional cognitive performance improved significantly in terms of verbal memory (t = -2.30; p<0.05), whereas significant deterioration was noted regarding verbal memory span (t = 2.31; p<0.05). 8 (36%) persons conformed to the criteria of cognitive improvement. 6 patients (27%) were postinterventionally classified as having deficits. Analysis yielded no statistically significant correlations between lesion quantity and cognitive change. CONCLUSION: Both improvement and deterioration of cognitive functioning was observed in our collective of patients, leaving the neuropsychological outcome after percutaneous transluminal angioplasty unpredictable in individual cases. The presence of acute ischemic lesions on DWI was found to be not tightly associated with cognitive dysfunction after CAS

    Do Early Hippocampal Imaging Changes Predict Later Sclerosis?

    No full text
    corecore